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ABSTRACT

‘The exact inverse scattering integral equation of this author is applied to passive seismic
artillery location in unknown media. It is shown that for such media this integral equation
need not be solved, since a time~space display of the effectal field spatially and terporally
locates the inmpulsive sources. Nuverico-experinmenta) verificatjon is presented,
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SECTION |
4
INTRODUCT IOM k
r
!
)
In section §! the Rayleigh surface wave equation is reformulated into an inhomogeneous E

free-space wave equation with a source term depending on an arbitrarily chosen reference

velocity. In section 11} the exact inverse scattering integral equation of this author
is rederived and applied to this inhomogeneous free-space Rayleigh surface wave equation.
The physical meaning of the effectal field is discussed in section IV. Specifically, that
this effectal field consists of the destructive interference between the true causal field
and a fictitious anti-causal field, both propagating at the reference velocity, and that

if the true field contains inpulsive sources, then the effectal field also contains impulsive

sources at the same spatial and temporal locations. A graphic time~space display of the
effectal field thus yields the correct temporal and spatial locations of the impulsive
sources, obviating the need for a solution of the inverse scattering integral equation for 1
the case where only these locations are needed, and the unknown medium velocity is not
needed. In section V the two dimensional inverse scattering integral equation is reformulated

in the time dovain; further illustrating the physical meaning of the effectal field. Numerico- K

experimental results are presented in section VI,

A closed form solution of a more general exact inverse scattering integral equation, developed
under a separate contract, is presented in the appendix section IX. Numerico-experimental

verification of this solution is also presented in section Vi.

In light of these numerico-experimental results, recommendations for future research are

made in section Vi,




SECTION 11

REFORMULATION OF THE RAYLEIGH SURFACE WAVE EQUATION

The two-dimensional Rayleigh surface wave equation in the frequency domain is

2 2 4
o+ kie =0 (1)
where
- W
“p TV W) ’ (2)

and where the velocity Vris related to the shear modulus ¥ and the mass density ¢ by

v, = 0.9194 ’g . (3)

Next, let a potential V and a source density o0 be defined respectively in terms of

an arbitrarily chosen reference velocity C as




p(X,w) = VIX,w) ¢(X,w) . (5)

The wave equation (1) thus becomes the inhomogeneous wave equation

vig + k¢ = -p (6)

subject to the constitutive equation (4).




SECTION 111

THE INVERSE SCATTERING INTEGRAL EQUATION

In this section the inverse scattering integral equation of this author [1] will he
rederived. This integral equation has been discussed and studied extensively by

this author [2] -~ [7] and others [8] ~ [28].

Let a field ¢+ satisfy the inhomogeneous wave equation

vip + k24 = -0 . (7)

Furthermore, let G be the free-~space (relative to v=c) Green's function for (7},

which satisfies the inhomogeneous wave equation

ViG6 + K2G = -6 ’ (R)

and the Sommerfeld radiation condition at infinity.

next, let H be the imaginary part of the Green's function G; i.e.,

H=1ImGg . (9)




It thus follows from (8) that this imaginary part of the Green's function satisfies

the homogeneous wave equation

VYH + kPH = 0 . (10)
Next, let the effectal field O (the term "effectal" will be explained and justified
in section IV) be defined as
8 = J.ds-(¢ VH - H V&) , (11)
S

where S is the surface on which the field ¢ is known, and where the support of the

unknown sources » is inside this surface S.

By Green's theorem, (11) reduces to

8 = fdv(¢ ViH - H v%¢) , (12)
v

which, by (8) and (10), further reduces to

r

8 = dv [ ¢ (-K2H) - H (-k2¢-p) ] , (13)
Yy
r

A = dv H p . (14)
Jy

The unknown sources p in the volume V are thus related to the known effectal field ¢ in
the volume V by the proper {i.e., x and x' € V) Fredholm integral equation of the first
kind; where the effectal field 0 in the volume V is camputable from knowledge of the
field ¢ on the surface S by (11).
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SECTION 1V

THC PHYSICAL MEANING OF THE EFFECTAL FIELD

The imaginarv part of the Green's function can be written as

Since the Green's function is causal, it follows from the Fourier transform relationshin

G(r,wr/c) <> alr,t-r/c) (15}

that

~4

*
G o lr,wr/2) «= a(r,t+r/2) . (1

It thus follows from (15) that

i , :
Hir,w) +- 5T [ atr,t=r/2) = alr,t+ric) ] . (1)

In the time domain, the effectal field  is thus by (14) and (18)




——w

X, L = . dv [ alr,t-r/c) = gilr,ver/o) Jec (X, 00 (19)

The first convolution on the right hand side of (19) is clearly the real physical tire-
retarded causal field o(x,t) radiated by the sources i (x,t). The second integral
orn the right hand side of (19) is, however, a fictitious time=advanced anti-causal
field "radiated"” by the sources , (x,t). The effectal field “(x,t} is thus an imasinarv
field due to the destructive interference between the time-retarded causal field and

the fictitious time-advanced anti-causal field.

Examination ot (4), {5), and (19) readily reveals that if the field contains spatialliv
and teworally impulsive sources, then the effectal field wil! also contain these inpulsive
sources at the correct spatial and temporal locations. A graphic time~space display of
the effectal field will thus yield these correct spatial and temporal locations, obviating
the need for a salution of the inverse scattering integral equation {19) for the case where

only these locations are needed.




SECTION V

THE TWO-DIMENSIONAL EFFECTAL FIELD IN THE TIME DOMATN

In the frequency domain, the two~dimensional Green's function is

-1 ) 0
if (-r) (20)
_ 1 :
=7 [Jo(kr) + 1Yo(kr)] (21)
N U T (22)
4 o 4 "o :

Thus, in the frequency domain, the imaginary part of the two-dimensional Green's function is

H = ImC (23)

Jo(kr) . (24)

A=

In the time danain, the "imaginary part" of the two-dimensional Green's function becomes

; 1 —iwt ] wr
h ~ﬂje ZJO(C) dw , (25)

which, with the aid of the integral representation of the RBessel functions




hid
_ 1 iz cos ¢ ’
J(z) = ;Ie cos n¢ d¢ (26) !
c
yields
a0 ™
! —iwlt - = cos 3) 3
h = B2 e c d¢ dw , (27) :
- o '
which, in turn, with the aid of the delta function representation {
o« J
. -iwt ‘
§(t) = zﬂfe dw (28)
reduces to
ul
h=-f st -5cos ¢) do . (29)
Ay c
0
Introducing the change of variable
i
z =L oos (30)
c ¢ ¢
yields for (29)
r
1 c 8§(t-2)
L 31
| h 4"_{ - dz (31)
_r (E)Z - z2
c 3
which yields




v - - o :
‘/(':) S
Voo . (32)

It is now of interest tn compare (32) with the full two-dimensional Green's function in

the time damain given by [29]

Jr-' -5y
) (33)

[N i

In the time donain, the two-dimensional inverse scattering integral equation (14) is thus

I I nix-x',t-t") o(x',t") dt' dv' = e(x,t) . (34)
VI

As previously indicated, examination of (4), (5), and (34) readily reveals that if the
field contains spatially and temporally impulsive sources, then the effectal field will
also contain these impulsive sources at the correct spatial and temporal locations,
A graphic time-space display of the effectal field will thus yield these correct spatial
and temporal locations, obviating the need for a solution of the inverse scattering

integral equation (34) for the case where only these locations are needed.
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SECTION VI

NUMERICO-EXPERIMENTAL RESULTS

A two-dimensiona! surtface with a unity normalized Rayleigh surface wave velocity was
selected. A spatially and temporally impulsive source was placed in this surface,
and an analytic expression for the radiated field was obtained for all points on the
boundary of a 128x128 data grid containing this source. The effectal field at all
points in the grid was numerically computed by (11) for 256 frequencies, with a reference
velocity ¢=2 (i.e., 100% off the correct velocity), Next, a fast Fourier transform
of the effectal field into the time domain was taken. A graphic time-space representatfon
of every fifth point for t=-5 to t=70 of this effectal field is shown on page 13.
As shown in section V, the correct temporal and spatial locations of the impulsive source
are obtained (see t=0 frame); however, as anticipated, the effectal field "flies in"

and "flies out" at twice the correct velocity,

The preceeding numerical experiment was repeated with a random zero db. signal to noise
added to the radiated field prior to the computation of the effectal field by (11}.
A similar graphic time-space representation for this computation is shown on page 13,
Again, the correct temporal and spatial location of the impulsive source is obtained (see
t=0 frame), and again, as anticipated, the noise corrupted but recognizahle effectal

field "flies in" and "flies out" at approximately twice the correct velocity.

When this research was initiated, only the 1973 inverse scattering integral equation of
this author was in existence, and only the implementation of the graphic time-space
representation of the effectal field was anticipated. A more complete inverse scattering
integral equation and its analytic closed form solution (presented in the appendix)
were obtained (under separate contract N0O0014-76-C-0082) in the latter part of this

research. This solution was numerico-experimentally verified for a point source and

1M

v —— =




PSS e o

l

St o

B i 1

a point source pair separated by 1/5 of a wavelength, under the same conditions as the
time-space representations of pages 13 and 14, except that the implied Hilbert transform
was executed with the aid of the Wiener-Lee transform [30]. A graphic representation

of the resulting fields is on pages 15 and 16.

12
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SECTION VLI

RECOMMENDATIONS FOR FUTURE RESEARCH

When this research was initiated, only the 1973 inverse scattering integral equation of
this author was 1n existence, and only the implementation of the graphic time-space
representation of the effectal field was anticipated. The more complate inverse scattering
integral equation and its analytic closed form solution presented in the appendix were
obtained (under separate contract N00014-76-C~0082) only in the latter part of this
research. The successful numerico-experimental verification of this new closed form
solution indicates that future research should be concentrated toward this solution;

specifically, but not nescessarily limited to:

1. Investigate and determine which of the various existing numerical Hilhert transfom

and Wiener-Lee transform algorithms is best suited for the solution.

2. Investigate and determine the effects of reference slowness sampling density and

domain truncation,

3. Investigate and determine the effects of incomplete aspect angle information and

and input data sampling density.

4. Investigate and determine the effects of input data noise and errors.

5. Make use of the availability of wide frequency band and/or time domain information,

for the purpose of overdetermining the problem and reducing the effects of items 1 through 4,

6. Make use of item 5 when a priori information exists that the medium is non-dispersive.




7. Investigate the feasibility and desirability of casting the exact closed form

svlution in the time domain.

8. Extend and generalize the exact closed form solution to tensor field for the full

elastic wave equation.

18
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SECTION 1IX i

APPENDIX

EXACT INVERSE SCATTERING THEORY z

amer ikt o

NOTICE: This appendix consists of the reproduction in its entirety of
this author's report "Exact Inverse Scattering Theory", March 1980, which
was prepared for and supported by the Office of Naval Research, 800 North
Quincy Street, Arlington, Virginia 22217, Under contract NDOO14-76-C-0082.
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APPEMDIX ABSTRACT

The concepts of reference wave slowness (reciprocal of velocity) and an
associated free reference space Green's fuction slowness spectrum are
introduced. A modified Kirchhoff surface integral, containing only
the imaginary part of this free reference space Green's function slowness
spectrum, is formulated, yielding an integral equation for the unknown
fields and sources in the interior of a closed surface on which the
{remotely sensed) fields are knowmn. A well-posed, analytic closed form
solution of this integral equation is obtained.
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SECTION A-1I

INTRODUCTION

Presented is a unified approach and sofution to the inverse scattering and inverse

source problems for the inhomogeneous scalar wave equation

subject to the constitutive equation

©
]

Ve o, (2)
and the homogeneous scalar wave equation

2
w

v2¢ + ——— ¢ = 0 . (3)
c2(x,w)

To this end, the single mixed scalar wave equation

Vi + ——— 6 = - p (4)

is introduced. From an inverse scattering inverse source perspective, (4) reduces

to (1) if the medium wave velocity c(X,w) is a known constant and the source . is the




e e it = e .

unknown, and (4) reduces to (3) if the sources . are known to be sero and the edrum

wave velocity (X,.) is the unknown.

lt is argued that the inverse solution presented 15 an alternative {to the firec?
Xirchhoff) integration of the wave equation. It is thus apprapriate to vy

relevant properties of the direct Kirchhoff integration

nf the wave equation (1), Specifically, the surface integral in (5) is an equ valan
statarent relating the field at a field pyint on one side of the clnset surface nro it !
by all the sources on the other side of the closed surface, via the fields produced “v
t

these sources on this closed surface. The inverse scattering inverse source pro%H!en

is, hnwever, characterized by both the field point for the unknown fields as w»il as a'!
the unknown sources being on the same side of the closed surface (on which the remte
sensing is accomplished), for which situation the Kirchhoff surface integral vanishes,
thus rendering this Kirchhoff surface integral useless for the inverse scattering
inverse source problen. A modified Kirchhoff surface integral, which does not suffer

from this pathology, is introduced next,

25
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SECTION A-11
THE (NVERSE SCATTERING INTEGRAL EQUATION

Let > be the free reference space Green's function satisfying the inhamogeneous

wave equation
. L R
VRS o - (6)
and the Sommerfeld radiation condition at infinity, where vV is any arbitrarily chosen
reference velocity.
Next, let an effectal field O be defined as
O Sde’(; I R , (7‘
7 L
s
where
Gi = ImG , (8}

which, by (6), satisfies the homogeneous wave equation

o

v2G, +
1

w
—n
V24

26

G; =0 . (9)




e R R

© ot er—————————— - e e ————— 1
.

Ry Green's theorem, (7) reduces to

- 26 - 2 .
6 fdv(qmci G, v2) (10) l

Vv 3

which, by (4) and (9), reduces to

: t
2 w !

o =§ dv [o¢-% G.) - G, (————— ¢~0)] (1)
I v v t C2(x,w) 11
v ,
) ;j

6= dvG, pt+t JdviG, }) —m-—]¢ . (12)
fv L J:/ [ e ) v2 t

(which, for the case of a known constant medium wave velocity c, unknown sources .,
and a reference velocity chosen as v=C, reduces to the earlier inverse scattering i

integral equation of this author [1]).
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SECTION A-111

SOLUTION OF THE INTEGRAL EQUATION

Let a medium reference wave slowness 7 be introduced and defined as

(13)

< f—

The inverse scattering integral equation {12), in terms of this reference slowness,

thus is

+I\".(XiX'.m.3) —— = w0 1% SIND ANV ’ {14)
L c (X',m)

where in two and three dimensions, the imaginary part of the free reference space

Green's functions are

Gi<xlx'.m,o) = 3 J,(wro) (15)

.
A S e i il b

PO




GLxXe, ) = ST (16)

respectively, and where »Z|X-X'l
Taking the HHilbert transform of (14) with respect to the reference slowness  yields

X

0
J=J

I « I 1] . L]
lj _3(X,u.,u') dO' =Ilj' Z’Z: XX ,'(A‘,E__l_ Lj" ."(x',,u) ",fV'
- v

w. 3! w= . ,
+ILJ‘ in(xLx",“”J ) - W o' dat o g(x',u) ! . (17)
n I~ o
v T-x ‘

By (15) and (16), with the aid of [2,3] and twice repeated application of [4,5]

it follows that

~ Tyt '
_1_"‘ (;l-il{_x_"'_ull_’_) ]-' = ‘;.7;;\“11') y,p(x;x"".\ , e
and
LR X', 3 ") N ,
l‘J‘ g : l(xif‘;"’ do' = ggmluwr) o wr,(x;X',.-.*r‘ , (191

in two and three dimensions, but not in one dimension, \‘Vhere in two and three

dimensions Gr is the real part of the free reference space Green's function




and

. cosluro)

A
Gp(x[x yw,d) inp (21)
respectively.,
Thus, with the aid of (18) and (19), (17) becomes
'
%f QL%’—,O——) do! =f8gn(wr) Gr(xlx',m,a) p(x',w) dv'
- v
w? i
+ | sgntuwr Gr(x|x',w,0) —_—— w0t o2 ] X, dvt (22)
c2(x!,w)

\

Restricting (22) to positive non-zero frequencies w, permits its rewriting as the

principal value integral (i.e., excluding integration over x:x')

©

1]
%J' g—(%t_i";,l—) do!' = pf@rfxlx',w,o) o(X',w) dv'
- v
m’Z
+ prr(XlX',w,O) [————— - w? o? | e(x',w) dv' (23)
CZ(X',w)

\4

Since the imaginary part of the free reference space Green's function is not singular

at x=x} it follows fram the addition of (14) and (23) that for positive non-zero

frequencies




-

3 Wy ! -
%J‘ ~(~";_—JL,1-) dot 4 18(X,w,0) = pfb(x‘x',u,,d) e UNO R

2%

+pf(?(x|x',\u,1) —_— - ¢ SRR . (24
. (x’,u)
v
For the inverse scattering inverse source case of a known constant medium velocity and
unknown sources  (i.e., wave equation (1)), (24) reduces, after chosing the reference

1
slowness "=, for «>0, to

¢

= 8(X,w,0) | 1

———— do + ie(x,w,—c—> 2 p G(x{x',w,g) PR u) Ay . (25)
— c v

At that reference siowness, the direct Kirchhoff integration (5) of the wave equation

(1) can be written as

MX,w) = pIC(X‘X','.\,l) RIS SN ENSIVARN TR NG S , (741

v

Since in two and three dimensions the Green's function singularity is weak and

removable, and the Kirchhoff surface integral represents the incident field.

Thus combining (25) and (26) yields the solution

8(X,w, ) 1
HX,w) = = — — do + 10X ,w, -+ X)), 0 (27)
y 7T 1 \

For the inverse scattering inverse source case of known zero sources and unknown
medium wave velocity c(X,w) i.e., wave equation (3), (24) reduces, after choosing the

1
reference slowness 0'-——C—, for »>0, to
o




o

) S Ky, |
- — Jo 4+ 15X, w,— )
n o
1 u)'. A,"‘
= pf(:(xfx’,‘u,; Y - — ] axt, ! . (28)

A digression concerning the wave equation (3) is now in order. This wave equation

can be rewritten as

o

W
V2¢+E &= -0,

? oy

Qta

where the sources 0, are reference sources relative to the arbitrarily chosen reference

wave velocity c,, given by the refative constitutive equation

= V. (30"

and the potential V,is a reference potential refative to the arbitrarily chonsen

reference wave velocity c,, given by

Y] '
V, = - — {31)
C‘"(x,u\) Cn
It thus follows that (2R) can be written for -0 as
L[ %, w,0) : , ]
- ——— do + 16(X,w,~ ) = p G(XIX',u»,'- Vi aX,w, - ) dv? . (32)
m l - Ca [ o
~-00 Co v

32
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1
(e

e

At this reference slowness the direct Kirchhoff integration (5) of the wave

equation (29) can be written as
- [y ! 1 \ 1 ' ' . '
DN0 SR A RIS 20 N e S LTS S , (33}
since in two and three dimensions the Green's function singufarity is weak and remvabhle,

and the Kirchhoff surface integral represents the incident fietd.

Thus, combining {32) and (33) yields the (same as {(27})}) solution
. X, ., T . .
X, W) :;' el SERGPSELD S N I . {34

The sources, potentiaf, and medium wave velocities can be obtained from knowledge of

the fields in a variety of straight-forward manners.

One =might be tempted to attempt to simplify the solutions (27,34) by aoplying and
executing analytically the Hilbert transform with respect to the reference slowness
dircectly on the surface integral definition (7) of the effectal field, thus obrain.»
this definition in terms of the principal value of the real part of the free reference

space Green's function, instead of the imaginary part of this free reference space “ween's

function. The flaw with such an attempt is that on the surface of integration, awav tra-

the singular point of the real part of the free reference space Green's function, the
principal value and the complete singutar real part of the free reference space Green's
function are indistinguishable and identical, and the apolication of Green's theorem as
per (7-12) will, by the differentiability and continuity requirement imposed hy Green'.
theorem, fail to generate the principal value of the real part of the free reference space
Green's function in the volume interior to the surface of integration, which would have
vielded the desired solution, but generate the full singular real part of the free reference
space Green's function in this interior, which fails to yield the desired solution, and

yield (a slightly modified) version of the integral equation (12), instead of its solution.

33
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